Вариант 2

13.а) Решите уравнение 

б) Укажите корни этого уравнения, принадлежащие отрезку 

14.В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 4. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите периметр многоугольника, являющегося сечением пирамиды SABC плоскостью α.

15.Решите неравенство: 

16.Медианы AA1BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AC = 3MB.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 10.

17.1 января 2015 года Александр Сергеевич взял в банке 1,1 млн рублей в кредит. Схема выплаты кредита следующая  — 1 числа каждого следующего месяца банк начисляет 1 процент на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Александр Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Александр Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 275 тыс. рублей?

18.Найдите все значения a, при каждом из которых система уравнений

имеет ровно два различных решения.

19.Натуральные числа от 1 до 12 разбивают на четыре группы, в каждой из которых есть по крайней мере два числа. Для каждой группы находят сумму чисел этой группы. Для каждой пары групп находят модуль разности найденных сумм и полученные 6 чисел складывают.

 а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Каково наименьшее возможное значение полученного результата?

Последнее изменение: Пятница, 17 Август 2018, 10:16