Вариант 5

13.а) Решите уравнение: 

б) Определите, какие из его корней принадлежат отрезку 

14.Дана четырёхугольная пирамида SABCD с прямоугольником ABCD в основании. Сторона AB равна 4, а BC равна Вершина пирамиды S проектируется в центр пересечения диагоналей прямоугольника. Из вершины A и C на ребро SBопущены перпендикуляры AP и CQ.

а) Докажите, что точка P является серединой отрезка BQ.

б) Найдите угол между плоскостями SBA и SBC, если ребро SD равно 8.

15.Решите неравенство 

16.Точка Е — середина стороны  квадрата АВСD. Серединные перпендикуляры к отрезкам АЕ и ЕС пересекаются в точке O.

а) Докажите, что .

б) Найдите .


17.15-го декабря планируется взять кредит в банке на сумму 1100 тысяч рублей на 31 месяц. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 30-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 31-го месяца кредит должен быть полностью погашен. Какой долг будет 15-го числа 30-го месяца, если общая сумма выплат после полного погашения кредита составит 1503 тысячи рублей?


18.Найдите все значения а, при каждом из которых уравнение

не имеет корней.


19.За победу в шахматной партии начисляют 1 очко, за ничью ─ 0,5 очка, за проигрыш ─ 0 очков. В турнире принимают участие m мальчиков и d девочек, причём каждый играет с каждым дважды.

а) Каково наибольшее количество очков, которое в сумме могли набрать девочки, если m = 3, d = 2.

б) Какова сумма набранных всеми участниками очков, если m + d = 10.

в) Каковы все возможные значения d, если m = 7d и известно, что в сумме мальчики набрали ровно в 3 раза больше очков, чем девочки?


Последнее изменение: Вторник, 21 Август 2018, 09:14